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We consider the behavior of small ,  growing per turbat ions in a laminar boundary layer  on an elast ic 
surface.  

On the basis  of the analysis we assume the usual O r r - S o m m e r f e l d  equation with boundary conditions 
for the surface,  investigating under the action of a per turbing p re s su re  p only smal l  normal  deformations 
y S = k p  exp (iO) [1]: 
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H e r e f  =f(y)  is the dimensionless  amplitude of the s t r eam function of the per turbing motion, y is the 
dimensionless t r ansve r se  coordinate (y = i on the outer boundary of the boundary layer  of thickness 5,and 
y = 0 on a s t reamlined surface in the equilibrium configuration), a is the wave number,  u = u(y) is the rat io 
of the longitudinal component of the velocity of the principal  motion in the boundary layer  to the velocity U 
on its outer boundary, c = Cr + ici is a complex quantity containing the ra t io  of the phase velocity of propaga-  
tion of the perturbat ion wave c B to U (Cr = cB/U =f l rS /aU)  and the dimensionless  coefficient of growth of 
per turbat ions with t ime (ci =f l iS /aU) ,  fir is the c i rcu lar  frequency of the perturbat ion wave, fli is the coef-  
ficient of growth of perturbat ions with t ime, R = US/~ is the local Reynolds number,  , is the kinematic coef-  
ficient of v iscosi ty  of the liquid, k is the compliance coefficient of the surface,  0 is the angle of phase shift 
between the deformation of the surface and the per turbing p re s su re .  

If we use the usual form for the par t icu lar  solutions of the O r r - S o m m e r f e l d  equation [2], then f rom 
the boundary conditions (1) we can obtain an approximate charac te r i s t i c  equation, in which t e rms  of order  
(~R) -1 and higher a re  dropped: 

F - -  ~ z -5 kcuo" 
--uo'y~ ( ' T - - ~  exp(--iO)--kcuo' ) (2) 

where the index k corresponds  to the cr i t ica l  layer  (y = Yk for u = Cr) and the index 0 cor responds  to the co-  
ordinate y = 0. 

Equation (2) outwardly does not differ f rom the equation for neutral  oscil lat ions [1], but the quantities 
that appear in it must be calculated taking account of ci = 0. The quantity z, which depends on the velocity 
profile of the principal flow, is not related to the charac te r i s t i c s  of the s t reamlined surface and has the same 
form as for the case of a solid wall [3]: 

i ~ . Yk t 
z = %ud - -  (%')z V~ (1 - -  y~) + (%'-----7 m i -------~- - 5  ~ ( i  - -  %)~ + 

U t - -  +c~ o (u~p ] + i  (3)  
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Fig .  2 

The left side of Eq. (2) is a universal  function, which is s imilar  
to the Tietjens function for neutral  oscil lat ions,  and has been complete-  
ly tabulated for fixed values of the pa ramete r  c i /yku k '  using Hankel 
functions of the f i rs t  kind of order  1/3 : 

v i 

w = y~ ~ '  (5) 

Equation (2) was solved graphically (using the construct ion of 
polar  diagrams of its left and r ight  sides) for a Blasius profile for a 
number of values of ci/YkU k'  with zero phase shift 0 = 0 and four coef-  

Fig. 3 
ficients of compliance k = 0, 0.1, 0.4, 1.0. Calculation resu l t s  are  shown 

in Fig. 1 in the (a*, it*) plane; an as te r i sk  with a symbol corresponds  to charac te r i s t i cs  determined based 
on the thickness of the displacement 5". With an increase  in the ratio ci/YkUk' the area  bounded by the 
curves decreases .  The instant of degeneracy of the curve into a point corresponds  to the physical  impos-  
sibility o f  the fur ther  existence of plane perturbations of the type under considerat ion:  

= u8/exp {i I a x -  (~ + i~) r]} (6) 

where �9 is a dimensional s t r eam function of the per turbing motion, a = ~/6  is the frequency of the p e r t u r -  
bation-wave shape, X = x5 is the longitudinal dimensional coordinate (x is the dimensionless coordinate),  
T = tS/U is the t ime,  t is the dimensionless  t i m e  and in agreement  with the hypothesis of Michel [4] is taken 
as the beginning of the region of l amina r - tu rbu len t  transit ion.  The corresponding Reynolds number can 
be called cr i t ical  (R 2 or  R~), and the minimum Reynolds number on the curve of neutral  stability (c i = 0) 
is the Reynolds number of the loss of stability (R 1 or  R~). The dependence of R~ and R2* on the compliance 
coefficient k is given in Fig. 2. 

There  is also a definite in teres t  in the question of the effect of the elast ici ty of the surface on the 
growth of velocity pulsations. The longitudinal velocity component of the per turbed motion is found in te rms  
of the s t ream function (6): 

t 0w 
v x = --~ -~y A exp [i (aX - -  ~rT)] 

(A = A0 exp (BIT)) (7) 

where A is the amplitude of the pulsation velocity at the point with coordinate X and corresponding Reynolds 
number R x = UX/r,  A 0 = U f '  is the amplitude of the pulsation velocity at the point of the loss of stability 
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fii = ci = 0 for oscil lation of the given dimensionless frequency. This point corresponds  to the coordinate 
X 0 and Reynolds number Rx0 and R~. 

Taking into account that the perturbat ion wave propagates  [5] with group velocity cB + ~3CB/~ ~, we 
can obtain f rom (7) 

To X o  o 

In the case of a laminar boundary layer  on a plane plate we have 

(s) 

R* = 1.72VR-x- x and 

In A =0.668 ~8' Cr.~ dR* (9) 
A-'--o- ~ ~ -~*] Ro* 

In Fig. 3 we c a r r y  out a compar ison of the growth in amplitudes on elastic and rigid surfaces  for the 
dimensionless  frequencies f l r v /U  2 = 5 �9 10 -5 and 7.5 �9 10 -5. 

A theoret ical  investigation and calculation resul ts  enabled us to establish that with an increase  in the 
value of the compliance coefficient of a s t reamlined surface there is an Increase  in the Reynolds number of 
the loss of stability, the cr i t ical  Reynolds number, and the length of the pre - t rans i t ion  region (zones located 
between the points corresponding to R 1 and R2) ; there is a decrease  in the range of dangerous dimensionless  
frequencies of the per turbed motion corresponding to the instability z o n e  and also in the dimensionless  f r e -  
quency and the coefficient of growth of the maximum growing perturbat ions:  there is a re tardat ion in the 
growth of the amplitudes of the pulsation velocit ies.  

1o 

2. 

3. 

4. 

5. 

L I T E R A T U R E  C I T E D  

A. I. Korotkin, "Stability of a laminar  boundary layer  in an incompressible  liquid on an elastic s u r -  
face,"  Izv. Akad. Nauk SSSR, Mekhan. Zhidk. i Gaza, No. 3 (1966). 
A. M. Basin, A. I~ Korotkin, and L. F. Kozlov, Control of the Boundary Layer of a Ship [in Russian],  
Sudostroenie, Leningrad (1968). 
V. V. Droblenkov and A~ I. Korotkin, "Investigation of growing per turbat ions  in a laminar  boundary 
layer for var ious gradients  of the external  p r e s su re  in connection with the problem of the calculation 
of the t ransi t ion point," Materials  on the Exchange of Experience of the Scientific and Technical Divi- 
sion (NTO) of the A. N. Krylov Institute of the Shipbuilding Industry, No. 127 [in Russian],  Sudostroenie, 
Leningrad (1969). 
R. Michel, "Determination du point de t ransi t ion et calcul de la t rainee des profi ls  d 'a i le  en liquide 
incompress ib le ,"  ONERA Publ. No. 58 (1952). 
S. F. Shen, "Calculated amplified oscil lat ions in the plane Poiseulle and Blasius flows," J. Aero.  Sci., 
2_! , No. 1 (1954). 

255 


